Dynamic subnuclear relocalisation of WRKY40 in response to Abscisic acid in Arabidopsis thaliana
نویسندگان
چکیده
WRKY18, WRKY40 and WRKY60 are members of the WRKY transcription factor family and function as transcriptional regulators in ABA signal transduction in Arabidopsis thaliana. Here we show that WRKY18 and WRKY40, but not WRKY60, co-localise with PIF3, PIF4 and PHYB to Phytochrome B-containing nuclear bodies (PNBs). Localisation to the PNBs is phosphorylation-dependent and is inhibited by the general Ser/Thr-kinase inhibitor Staurosporine. Upon ABA treatment, WRKY40 relocalises from PNBs to the nucleoplasm in an OST1-dependent manner. This stimulus-induced relocalisation was not observed in response to other abiotic or biotic stimuli, including NaCl, MeJA or flg22 treatment. Bimolecular fluorescence complementation experiments indicate that while PIF3, PIF4 and PHYB physically interact in these bodies, PHYB, PIF3 and PIF4 do not interact with the two WRKY transcription factors, which may suggest a more general role for these bodies in regulation of transcriptional activity.
منابع مشابه
Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملThe Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition.
The phytohormone abscisic acid (ABA) plays a vital role in plant development and response to environmental challenges, but the complex networks of ABA signaling pathways are poorly understood. We previously reported that a chloroplast protein, the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR), functions as a receptor for ABA in Arabidopsis thaliana. Here, we report that ABAR spans...
متن کاملDifferential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کامل